Isometric actions of Heisenberg groups on compact Lorentz manifolds

نویسنده

  • Karin Melnick
چکیده

We prove results toward classifying compact Lorentz manifolds on which Heisenberg groups act isometrically. We give a general construction, leading to a new example, of codimension-one actions—those for which the dimension of the Heisenberg group is one less than the dimension of the manifold. The main result is a classification of codimension-one actions, under the assumption they are real-analytic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Groups Acting on Compact Manifolds

In this note we announce results concerning the volume preserving actions of arithmetic subgroups of higher rank semisimple groups on compact manifolds. Our results can be considered as the first rigidity results for homomorphisms of these groups into diffeomorphism groups and show a sharp contrast between the behavior of actions of these groups and actions of free groups. Let G be a connected ...

متن کامل

Nonnegative curvature, symmetry and fundamental group

We prove a result on equivariant deformations of flat bundles, and as a corollary, we obtain two “splitting in a finite cover” theorems for isometric group actions on Riemannian manifolds with infinite fundamental groups, where the manifolds are either compact of Ric ≥ 0, or complete of sec ≥ 0.

متن کامل

Actions of Discrete Groups on Stationary Lorentz Manifolds

We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.

متن کامل

First Cohomology, Rigidity and Deformations of Isometric Group Actions

In 1964, Weil gave a criterion for local rigidity of a homomorphism from a finitely generated group Γ to a finite dimensional Lie group G in terms of cohomology of Γ with coefficients in the Lie algebra of G. This note announces a generalization of Weil’s result to a class of homomorphisms into certain infinite dimensional Lie groups, namely diffeomorphism groups of compact manifolds. This give...

متن کامل

Lorentz Ricci solitons on 3-dimensional Lie groups

The three-dimensional Heisenberg group H3 has three left-invariant Lorentz metrics g1 , g2 and g3 as in [R92] . They are not isometric each other. In this paper, we characterize the left-invariant Lorentzian metric g1 as a Lorentz Ricci soliton. This Ricci soliton g1 is a shrinking non-gradient Ricci soliton. Likewise we prove that the isometry group of flat Euclid plane E(2) has Lorentz Ricci ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005