Isometric actions of Heisenberg groups on compact Lorentz manifolds
نویسنده
چکیده
We prove results toward classifying compact Lorentz manifolds on which Heisenberg groups act isometrically. We give a general construction, leading to a new example, of codimension-one actions—those for which the dimension of the Heisenberg group is one less than the dimension of the manifold. The main result is a classification of codimension-one actions, under the assumption they are real-analytic.
منابع مشابه
Arithmetic Groups Acting on Compact Manifolds
In this note we announce results concerning the volume preserving actions of arithmetic subgroups of higher rank semisimple groups on compact manifolds. Our results can be considered as the first rigidity results for homomorphisms of these groups into diffeomorphism groups and show a sharp contrast between the behavior of actions of these groups and actions of free groups. Let G be a connected ...
متن کاملNonnegative curvature, symmetry and fundamental group
We prove a result on equivariant deformations of flat bundles, and as a corollary, we obtain two “splitting in a finite cover” theorems for isometric group actions on Riemannian manifolds with infinite fundamental groups, where the manifolds are either compact of Ric ≥ 0, or complete of sec ≥ 0.
متن کاملActions of Discrete Groups on Stationary Lorentz Manifolds
We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.
متن کاملFirst Cohomology, Rigidity and Deformations of Isometric Group Actions
In 1964, Weil gave a criterion for local rigidity of a homomorphism from a finitely generated group Γ to a finite dimensional Lie group G in terms of cohomology of Γ with coefficients in the Lie algebra of G. This note announces a generalization of Weil’s result to a class of homomorphisms into certain infinite dimensional Lie groups, namely diffeomorphism groups of compact manifolds. This give...
متن کاملLorentz Ricci solitons on 3-dimensional Lie groups
The three-dimensional Heisenberg group H3 has three left-invariant Lorentz metrics g1 , g2 and g3 as in [R92] . They are not isometric each other. In this paper, we characterize the left-invariant Lorentzian metric g1 as a Lorentz Ricci soliton. This Ricci soliton g1 is a shrinking non-gradient Ricci soliton. Likewise we prove that the isometry group of flat Euclid plane E(2) has Lorentz Ricci ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005